Advances in B Lymphoblastic Leukemia MRD

Brent Wood MD PhD
Departments of Laboratory Medicine and Pathology
University of Washington
Measures of Response

• Clinical outcome
 – OS, EFS, RFS, etc.

• Blast count
 – Remission = < 5% by morphology

• Minimal Residual Disease
 – Cytogenetics, Flow, Molecular
Pediatric AML

- Blast count does not correlate with MRD

Pediatric AML

• Morphologic blast count is not predictive

AML Pre-Transplant

- Pre-Tx Blasts > 5% = MRD+ Blasts < 5%

ALL Morphology vs. Flow

0.8% M1 but Flow > 5%

6.5% M1 but Flow > 5%

ALL Morphology vs. Flow

Need a new definition of remission

• Morphologic blast counts correlate poorly with response in AML

• Shouldn’t use in clinical trial design

• Assess residual disease by other methods
Reproducibility
Sources of Variability

• Identification (false positive or negative)
 – Insufficiently informative reagents
 – Improper assay validation
 – Immunophenotypic shift
 – Inexperienced interpreters

• Quantitation
 – Too few events acquired
 – Denominator effects (2 fold)
 – Sample degeneration
 – Hemodilution
Figure S4: MRD detection in samples exchanged between the Eastern and Western reference laboratories.

The single point at <.01% for both labs represents 10 samples mutually interpreted as negative.

Flow MRD on AALL03B1

% of cases MRD >.01%

- JHU (n=2282)
- UW (n=1947)

* day 8 M1 patients excluded

Unpublished data, courtesy Mike Borowitz
Day 29 Flow MRD on AALL0232

Correlation between labs

Correlation between labs

AALL0232

0.1% <= Day 29 MRD < 1.0%

Eastern Region (n = 121)
Western Region (n = 114)

P = 0.5612

Interpretive Variability

First 3 rounds

Last 2 rounds

Experience with MRD Testing in B- ALL By Flow Cytometry Does Not Prevent Interpretative Discordance

Keeney, Wood et al. (2017) Cytometry B
Reproducibility

Flow cytometry is capable of reproducible MRD detection and enumeration

Lack of standardization in implementation is the source of variability in current practice
Opportunities
Anti-CD19 Immunotherapy

• Targets primary gating reagent
 – Identifying B cells difficult

• Eliminates expression of CD19
 – Rapidly after administration
 – Selects for CD19 (-) subset of leukemia
 – CD19 (-) MRD and relapse

• Need alternate strategy
 – CD22, CD24 + CD66b, cCD79a
 – Now routine assay
Anti-CD19 Immunotherapy

CD19-negative MRD with background hematogones

MRD by Flow Cytometry

• Advantages
 – Fast
 – Relatively inexpensive
 – Large instrument base
 – Reproducible

• Disadvantages
 – Subjective interpretation
 – Immunophenotypic drift after therapy
 – Moderate sensitivity
 – Poorly standardized
IgH and TCR Diversity
MRD by NGS

Day 0 Cancer clone Frequency

Day 29 Cancer clone Frequency

93 / 98 (95%) with IgH rearrangement
Remainder: 2 with D-J, 1 with clonal D-J + many VH, 2 none

MRD AND TRANSPLANT
Flow vs NGS

Better definition of low risk through higher sensitivity

Pulsipher et al Blood 2014;123:2017
Pulsipher et al Blood 2015;125:3501
B-LL End of Induction MRD

Flow and HTS are equivalent at 0.01%
Use of cutoff < 0.01% does not improve risk stratification
B-LL End of Induction MRD

Lower MRD more informative for high risk
Absence of detectable MRD by NGS = Excellent outcome
Standard risk patients
B-LL End of Induction MRD

Absence of detectable MRD by NGS for High risk patients ≠ Standard risk patients
Cut Point Analysis

Optimal cut point for combined patients is ~0.01%

Hazard Ratios

All patients
Standard risk
High risk

MRD

Optimal cut point for combined patients is ~0.01%
Discordant Flow and HTS has intermediate outcome
Similar result for Flow+/HTS- (N=17)
Discordant = Concordant MRD- at lower HTS cutoff of 0.001%
SmMIPS

- Minimal error rate for via single molecule tagging
- Targets multiple genomic regions of interest
- Simple, scalable protocol
- Modular and cost-effective target enrichment
- Low sample input requirements
AML MRD – NPM1 by NGS

Abnormal myeloid blasts (%) vs. NPM1 mutant VAF (%)

N = 353

AML MRD – NPM1 by NGS

Non-transplant N = 37

Mutation Type
- Exclusive across categories
- Co-occurring across categories
- Co-occurring within category
- 2-Hit mutation

Cytogenetic Risk
- Unfavorable
- Intermediate
- Favorable
- Unknown

Dendrix++ Group
- A
- B
- C

<table>
<thead>
<tr>
<th>TF Fusions</th>
<th>NPM1</th>
<th>TPS3</th>
<th>WT1</th>
<th>PHF6</th>
</tr>
</thead>
<tbody>
<tr>
<td>PML-RARA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYH11-CBF8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUNX1-RUNXIT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PICALM-MLLT10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor Suppressors</th>
<th>DNMT3A</th>
<th>DNMT3B</th>
<th>DNMT1</th>
<th>TET1</th>
<th>TET2</th>
<th>IDH1</th>
<th>IDH2</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHF6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DNA Methylation</th>
<th>FLT3</th>
<th>KIT</th>
<th>Other Tyr kinases</th>
<th>Ser–Thr kinases</th>
<th>KRAS/NRAS</th>
<th>PTPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNMT3A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNMT3B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNMT1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TET1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TET2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activated Signaling</th>
<th>RUNX1</th>
<th>CEBPA</th>
<th>Other myeloid TFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>FLT3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KIT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Tyr kinases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ser–Thr kinases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRAS/NRAS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTPs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Myeloid TFs</th>
<th>MLL-X fusions</th>
<th>MLL-PTD</th>
<th>NUP98-NSD1</th>
<th>ASXL1</th>
<th>EZH2</th>
<th>KDM6A</th>
<th>Other modifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUNX1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEBPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other myeloid TFs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLL-X fusions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLL-PTD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUP98-NSD1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASXL1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZH2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDM6A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other modifiers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chromatin Modifiers</th>
<th>Cohesin</th>
<th>Spliceosome</th>
<th>Cyto genetic Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLL fusions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MLL-PTD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NUP98-NSD1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASXL1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZH2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KDM6A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other modifiers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

200 AML Samples
AML MRD NGS

<table>
<thead>
<tr>
<th>Gene</th>
<th>Capture Design</th>
<th>Nucleotides sequenced (bp)</th>
<th>Number smMIP probes</th>
<th>Gene</th>
<th>Capture Design</th>
<th>Nucleotides sequenced (bp)</th>
<th>Number smMIP probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABL1</td>
<td>Hotspot</td>
<td>817</td>
<td>8</td>
<td>NT5C2</td>
<td>Hotspot</td>
<td>444</td>
<td>4</td>
</tr>
<tr>
<td>ALK</td>
<td>Hotspot</td>
<td>333</td>
<td>3</td>
<td>PHF6</td>
<td>Full Gene</td>
<td>927</td>
<td>9</td>
</tr>
<tr>
<td>BRAF</td>
<td>Hotspot</td>
<td>222</td>
<td>2</td>
<td>PIK3CA</td>
<td>Hotspot</td>
<td>333</td>
<td>3</td>
</tr>
<tr>
<td>CEBPA</td>
<td>Full Gene</td>
<td>203</td>
<td>2</td>
<td>PPM1D</td>
<td>Full Gene</td>
<td>1971</td>
<td>22</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>Hotspot</td>
<td>111</td>
<td>1</td>
<td>PTPN11</td>
<td>Full Gene</td>
<td>2418</td>
<td>24</td>
</tr>
<tr>
<td>EZH2</td>
<td>Full Gene</td>
<td>3117</td>
<td>32</td>
<td>RAD21</td>
<td>Full Gene</td>
<td>2410</td>
<td>25</td>
</tr>
<tr>
<td>FAM5C</td>
<td>Full Gene</td>
<td>2583</td>
<td>28</td>
<td>RET</td>
<td>Hotspot</td>
<td>111</td>
<td>1</td>
</tr>
<tr>
<td>FLT3</td>
<td>Hotspot</td>
<td>873</td>
<td>8</td>
<td>ROS1</td>
<td>Hotspot</td>
<td>333</td>
<td>3</td>
</tr>
<tr>
<td>HNRNPK</td>
<td>Full Gene</td>
<td>2281</td>
<td>24</td>
<td>RUNX1</td>
<td>Full Gene</td>
<td>1894</td>
<td>19</td>
</tr>
<tr>
<td>IDH1</td>
<td>Hotspot</td>
<td>111</td>
<td>1</td>
<td>SMC1A</td>
<td>Full Gene</td>
<td>5060</td>
<td>53</td>
</tr>
<tr>
<td>IDH2</td>
<td>Full Gene</td>
<td>205</td>
<td>2</td>
<td>SMC3</td>
<td>Full Gene</td>
<td>5147</td>
<td>52</td>
</tr>
<tr>
<td>JAK2</td>
<td>Hotspot</td>
<td>120</td>
<td>1</td>
<td>STAG2</td>
<td>Full Gene</td>
<td>5163</td>
<td>53</td>
</tr>
<tr>
<td>KIT</td>
<td>Hotspot</td>
<td>1041</td>
<td>10</td>
<td>TET2</td>
<td>Full Gene</td>
<td>6326</td>
<td>66</td>
</tr>
<tr>
<td>KRAS</td>
<td>Hotspot</td>
<td>333</td>
<td>3</td>
<td>TP53</td>
<td>Full Gene</td>
<td>2069</td>
<td>22</td>
</tr>
<tr>
<td>NPM1</td>
<td>Hotspot</td>
<td>89</td>
<td>1</td>
<td>U2AF1</td>
<td>Hotspot</td>
<td>222</td>
<td>2</td>
</tr>
<tr>
<td>NRAS</td>
<td>Hotspot</td>
<td>222</td>
<td>2</td>
<td>WT1</td>
<td>Full Gene</td>
<td>1688</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cell line variants</td>
<td>Hotspot</td>
<td>999</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>N/A</td>
<td>50176</td>
<td>511</td>
</tr>
</tbody>
</table>

32 gene panel of AML mutations
Coverage for ~85% of AML
Sensitivity of 0.011%

Good correlation between multigene assay and standard NPM1

NGS Conclusions

• NGS is capable of MRD detection
 – Can reproduce risk groups
• Sensitivity = NGS \((10^{-6})\) > ASO-PCR > Flow
• Uses
 – Standardize testing
 – Simplify sample requirements
 – Define MRD(-) low-risk group early
 – Define MRD(+) high-risk group late (EOC)
 – ? better for targeted immunotherapy
• TAT of > 1 week currently
Subclonal CRLF2

Harvey et al. (2016) submitted

CRLF2 deletion

P2RY8-CRLF2

Harvey et al. (2016) submitted
Molecular Cytometry

The ability to measure multiple molecular features at the single cell level for entire populations of cells
Tumor Heterogeneity

Conclusions

• Diagnosis is immunophenotypic, classification is genotypic

• MRD detection provides important unique prognostic information in acute leukemia
 – Is standard of care for B-ALL

• MRD by flow cytometry can be done reproducibly

• MRD by NGS is feasible for B-ALL, T-ALL and AML

• Single cell molecular methods are the next frontier
Acknowledgements

• Hematopathology Laboratory at UWMC
• Michael Borowitz MD PhD
• Entire COG ALL subcommittee
 – Steven Hunger, Bill Carroll, Mignon Loh
• Adaptive Biotechnologies
 – Harlan Robins (FHCRC)